

Rancher is a trademark of Rancher Labs, Inc. in the United States and/or other countries. Other brand
names mentioned herein are for identification purposes only and may be trademarks of their respective
holder(s). Information is subject to change without notice. © 2017 Rancher Labs, Inc. All rights reserved.
March 2017.

1

©Rancher Labs 2017. All rights Reserved. 2

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Contents
Introduction .. 4

1.1 Introduction .. 4

1.2 Kubernetes Concepts and Terminology ... 4

1.3 Kubernetes Functionalities ... 5

1.3.1 Co-Locating Related Processes ... 5

1.3.2 Data and Storage ... 6

1.3.3 Secret Management ... 6

1.3.4 Application Health .. 6

1.3.5 Container Management and Scaling ... 6

1.3.6 Service Registry and Discovery .. 6

1.3.7 Load Balancing... 6

1.3.8 Rolling Updates .. 7

1.3.9 Resource Monitoring .. 7

1.3.10 Log Management ... 7

1.4 Kubernetes Components ... 7

1.5 Summary ... 8

2. Deploying Kubernetes with Rancher .. 9

2.1 Rancher Overview ... 9

2.2 Native Kubernetes Support in Rancher .. 9

2.3 Setting Up a Rancher Kubernetes Environment ... 9

2.4 How Rancher Extends Kubernetes for User-Friendly Container Management14

2.4.1 Infrastructure Visibility ...14

2.4.2 Kubernetes Dashboard ..18

2.4.3 GUI-Based CRUD Operations for Kubernetes ...19

2.4.4 Usingkubectl - Credential Management and Web Access23

2.4.5 Manage Kubernetes Namespaces...24

3 Deploying a Multi-Service Application ...26

3.1 Defining Multi-Service Application ...26

3.2 Designing a Kubernetes service for an Application ...26

3.3 Load Balancing using Rancher Load Balancing services ..27

3.4 Service Discovery ...31

3.5 Storage ...32

©Rancher Labs 2017. All rights Reserved. 3

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

3.6 Secrets ...34

4 Container Operations ...36

4.1 Continuous Deployment – Service Upgrades and Rollbacks36

4.1.1 A closer look at deployments ...40

4.2 Rancher Private Registry Support for Kubernetes ...41

4.3 Container Monitoring ...42

4.3.1 Monitoring with Prometheus ..42

4.4 Monitoring with Heapster ..45

4.5 Ingress Support ..48

4.5.1 Ingress Use cases ...50

4.6 Container Logging...51

4.6.1 Using ELK Stack and logspout ..52

4.7 Auto Scaling..56

4.8 Kubernetes System Stack Upgrades in Rancher ..57

5 Managing packages in Kubernetes ...61

5.1 Introduction to Helm and Charts ..61

5.2 Structure of Helm Charts...61

5.3 Using Helm ...62

6 Additional Resources ..65

7 About the Authors ...66

©Rancher Labs 2017. All rights Reserved. 4

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Introduction

1. Overview of Kubernetes capabilities

1.1 Introduction

A lot has happened within the container ecosystem in the past few years to shape how software
is built and deployed. To manage a fleet of containers running microservices, one needs robust
cluster management capabilities that can handle scheduling, service discovery, load balancing,
resource monitoring and isolation, and more. For years, Google has used a cluster manager
called Borg to run thousands of jobs, supporting thousands of applications, running on multiple
clusters. Google has taken the best aspects of Borg and open-sourced them in the Kubernetes
project, opening up a powerful tool for running and managing containers at scale.

In this eBook, we will review capabilities of Kubernetes, deploy Kubernetes with Rancher, then
deploy and scale some sample multi-tier applications. But before we dive into details, let’s first
cover the general capabilities and concepts of Kubernetes. If you have some basic familiarity with
Kubernetes, then you can safely skip rest of this chapter and jump to Chapter 2. The Kubernetes
101 walkthrough provided by the Kubernetes project itself provides a strong starting point for
reviewing these concepts as well.

1.2 Kubernetes Concepts and Terminology

Let’s take some time to understand some basic concepts and Kubernetes terminology:

Cluster
A cluster is a set of machines (physical or virtual) on which your applications are managed and
run. For Kubernetes, all machines are managed as a cluster (or set of clusters, depending on
the topology used).

Node
A logical machine unit (physical or virtual), which is part of a larger cluster on which you can run
your applications.

Pod
A co-located group of containers and their storage is called a pod. For example, it makes sense
to have database processes and data containers as close as possible - ideally they should be in
same pod.

Label
Labels are names given to resources to classify them, and are always a key pair of name and
value. The key-value pairs can be used to filter, organize and perform mass operations on a set
of resources. Think of labels as a role, group, or any similar mechanism given to a container or
resource. One container can have a database role, while the other can be a load-balancer.
Similarly, all pods could be labeled by geography, with applied values like US, EU, APAC, etc. If
done in the right manner, labels can act as a powerful way to classify resources of various types.

http://kubernetes.io/docs/user-guide/walkthrough/
http://kubernetes.io/docs/user-guide/walkthrough/

©Rancher Labs 2017. All rights Reserved. 5

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Selector
A selector expression matches labels to filter certain resources. For example, you may want to
search for all pods that belong to a certain service, or find all containers that have a specific tier
label value as database. Labels and selectors are inherently two sides of the same coin. You can
use labels to classify resources and use selectors to find them and use them for certain actions.

Replication Controller
Replication Controllers (RC) are an abstraction used to manage pod lifecycles. One of key uses
of replication controllers is to maintain a certain number of pods. This is also useful when you
want to enable certain number of pods for scaling, or ensure that at least one pod. It is a best
practice to use replication controllers to define pod lifecycles, rather than to create pods directly.

Replica Sets
Replica Sets define how many replicas of each pod will be running. They also monitor and ensure
the required number of pods are running, replacing pods that die. Replica Sets can act as
replacements for Replication Controllers.

Service
A service is an abstraction on top of pods which provides a single IP address and DNS name by
which the pods can be accessed. This load balancing configuration is much easier to manage,
and helps scale pods seamlessly.

Volume
A volume is a directory with data which is accessible to a container. The volume co-terminates
with the pods that encloses it.

Name
A name by which a resource is identified.

Namespace
Namespace provides additional qualification to a resource name. This is especially helpful when
multiple teams/projects are using same cluster and there is a potential for name collision. You
can think of namespace as a virtual wall between multiple clusters.

Annotation
An annotation is a Label but with much larger data capacity. Typically, this data is not readable
by humans and not easy to filter through. Annotation is useful only for storing data which may not
be searched but is required by the resource (for example, storing strong keys, etc).

1.3 Kubernetes Functionalities

At bare minimum, any container orchestration platform needs the ability to run and schedule
containers. But to manage containers effectively, additional features are needed. Here, we will
look at the functionalities that Kubernetes has to manage containers, and along the way introduce
some additional concepts that Kubernetes uses.

1.3.1 Co-Locating Related Processes

Most of applications today are built from multiple components or layers, and sometimes these
components must be tightly coupled to each other. Logically, it makes sense to co-locate tightly
coupled components as close to enable easier network communication and shared storage
usage. Kubernetes enables co-locating related containers through pods.

©Rancher Labs 2017. All rights Reserved. 6

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

1.3.2 Data and Storage

By their very nature, containers are short-lived. If a container reboots, the data inside it is lost;
hence, the introduction of Docker volumes. Docker volumes lack a defined lifecycle like the
containers (as of this publish date). In contrast, Kubernetes volumes are tied to the lifecycle for
the container with which the volumes are associated. Kubernetes also has several volume types
to cater to various use cases.

1.3.3 Secret Management

Applications use secrets such as passwords, SSH keys and API tokens all the time. To prevent
disclosing the secrets in the definition files that define containers/clusters, Kubernetes encodes
them in Secret objects for later referral in the definition files.

1.3.4 Application Health

Long-running applications may eventually break, or degrade. Kubernetes provides a way to check
application health with HTTP endpoints using liveness probes. Some applications start but are
not ready to serve requests: for example, when building a cache at the start of the application. In
these situations, Kubernetes provides a readiness probe. Lastly, for applications that must
terminate deliberately but gracefully, Kubernetes provides termination hooks to execute certain
activities before the container is terminated.

1.3.5 Container Management and Scaling

If a container unexpectedly goes down, it is important that it is replaced by a new one. To achieve
this, Kubernetes uses a replication controller, which ensures that a certain number of replicas of
a pod are always running. In cases where only one replica of a pod needs to be running, its
replication factor can be set to 1. in which case Kubernetes will bring it back up if it goes down.
Autoscaling of pods replicas can be setup based on other conditions, such as CPU utilization.

1.3.6 Service Registry and Discovery

Consider a vast cluster running a large number of nodes. When a container fails on a given node,
it may be launched on a different node. How do you ensure that all other containers connecting
to that failed container receive the IP address of the replacement container? This is an important
consideration in a microservices architecture where you must dynamically manage service
endpoints.

While Docker allows networking at the host level only (and Docker Swarm works across hosts),
Kubernetes makes network management much easier, by enabling any pod to talk to other pods
within same namespace, irrespective of the host. This makes exposing ports and managing links
between different services much easier.

1.3.7 Load Balancing

Every application that is scaled needs load balancing. In Kubernetes, load balancing can be
implemented using an abstraction called a “service,” or with an ingress-type resource. A service
masks underlying pods/containers and instead represents them as a single entity. The ingress

©Rancher Labs 2017. All rights Reserved. 7

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

resource works by exposing the underlying containers through a dynamically created load
balancer. We will look at both concepts in detail in later sections of book.

1.3.8 Rolling Updates

Many applications cannot be taken down for updates for an extended period of time, and in some
cases, cannot be taken down at all. Rolling updates ensure that a minimum number of instances
are always available, while instances are taken out of the pool for updates. Typically, the strategy
is to take some percentage of instances out of service, upgrade them, and then put them back
into service before repeating the process with another set of instances.

Kubernetes supports rolling updates with the use of “deployment” and “rolling-update”
abstractions. Deployments are a fairly recent addition to the project, but provide a powerful and
declarative way to control how service updates are performed and is recommended over rolling-
updates.

1.3.9 Resource Monitoring

Knowing the health of your systems is critical to running a large cluster. Kubernetes monitors the
clusters at multiple levels. Heapster is used to aggregate vital metrics, while the kubelet node
agent queries cAdvisor to fetch data from containers and provide to Heapster. The performance
data can be stored in InfluxDB and visualized by Grafana, or it can be fed to Google Cloud
monitoring for storage and visualization.

1.3.10 Log Management

Fetching and analyzing log data is critical to understanding what is happening with a given cluster.
Internal Kubernetes components use log library to log data; kubectl (the command line interface)
can be used to fetch log data from containers. This data can be fed to an ELK (Elasticsearch,
Logstash and Kibana) stack or Google Cloud logging for further analysis and visualization.

1.4 Kubernetes Components

Kubernetes works in a master-node mode, where a master can manage a large number of nodes.
Some components run only on masters, some components run only on node and provide all
management support needed on node.

https://github.com/kubernetes/heapster
https://github.com/google/cadvisor

©Rancher Labs 2017. All rights Reserved. 8

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

The master can be run in HA mode with a multi-master setup. Apart from components listed for
master as shown in the above diagram, there are optional components such as: user interface,
container resource monitoring and logging-related components.

1.5 Summary

Kubernetes provides cluster management for containerized workloads and simplifies container
orchestration at scale. In this chapter, we looked at Kubernetes terminologies, and how
Kubernetes can help companies adopt containers. In the chapters that follow, we will look at how
Kubernetes and Rancher can be used to deploy applications and perform various container
operations.

©Rancher Labs 2017. All rights Reserved. 9

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

2. Deploying Kubernetes with Rancher

2.1 Rancher Overview

Rancher is an open source software platform for deploying and managing containers in
production. It includes commercially-supported distributions of Kubernetes, Mesos, and Docker
Swarm for container orchestration, and allows teams to transparently view and manage the
infrastructure and containers supporting their applications. Rancher provides built-in
authentication, networking, storage, and load-balancing capabilities as well.

2.2 Native Kubernetes Support in Rancher

Rancher natively supports Kubernetes and allows users to control its features through a simple
and intuitive UI. Kubernetes can be launched in a matter of minutes with a single click through
Rancher. Multiple teams and access policies for their clusters can be managed through Rancher,
as the platform integrates with LDAP, AD, and GitHub for authentication. Once the cluster is up,
any number of hosts can be added and Rancher then provides complete visibility for both
developer and operations teams into infrastructure and applications.

Additionally, Rancher provides an application catalog with templates to deploy complex
applications in a single-click. The templates that back the application catalog can be stored in a
Git repo, and can be shared across teams. Rancher DNS is a drop-in replacement for Sky DNS
thus providing transparent, scalable and simplified network management across the cluster.

2.3 Setting Up a Rancher Kubernetes Environment

Setting up a Rancher server is easy. You can set one up by following instructions here, or if you
wish to use Vagrant, you can clone the repo here and run vagrant up.

When you deploy Rancher server, you should see a screen that looks like this:

Let’s first add an environment for Kubernetes. An environment in Rancher is a logical entity for
sharing deployments and resources with different sets of users, and the platform allows you to

http://rancher.com/getting-started/
https://github.com/infracloudio/rancher-vagrant-setup

©Rancher Labs 2017. All rights Reserved. 10

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

choose among several different orchestration frameworks (Kubernetes, Mesos, Docker Swarm,
and Cattle). Everything is done in context of an environment. Environments in Rancher can
serve as logical separations for different teams within a company, such as development or QA.

Once the Kubernetes environment has been created, we can add hosts to the it. Choose “Add
Hosts” within the newly-created Kubernetes environment from the drop-down menu at top of the
screen, where we can add a host machine from some of public clouds or from a custom stack. In
this example, we’ll choose the custom method. If you are still using the Vagrantfile from Git repo,
set up three nodes as described below. You can of course change this as per your use case.

Hostname Details Docker Version

ranch-svr Rancher Master Latest

Ranch-def Default environment Latest

Ranch-Kubernetes Kubernetes environment 1.10.3 (Kubernetes
compatible)

©Rancher Labs 2017. All rights Reserved. 11

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

As we add the details for the hosts, the command to register the host with Rancher is modified.
Copy this command and log into a host other than Rancher master on which you want to setup
your Kubernetes cluster:

Once you run above command on a new machine, the host(s) tries to contact the Rancher server
with the key. The server then verifies the key and registers the agent. Based on the environment
to which the agent belongs, further instructions are sent to agent to bring it to its desired state. In
our case, since this is the first and only node in the Kubernetes environment, a complete
Kubernetes stack is already setup on the node (note: starting with Rancher 1.1, it is suggested to
have at least three hosts for your Kubernetes deployment; having these hosts for etcd ensures a
highly-available setup).

©Rancher Labs 2017. All rights Reserved. 12

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

You’ll see the Kubernetes cluster being setup (this may take a few minutes):

Once the cluster has been set up, the Kubernetes menu is populated. If you choose the
“Dashboard” option from the Kubernetes drop-down menu, you will notice a link to the
Kubernetes UI :

If you navigate to “Infrastructure stacks” from Kubernetes menu, you will notice various groups
of stacks which have been deployed as part of setting up Kubernetes:

©Rancher Labs 2017. All rights Reserved. 13

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

After expanding the Kubernetes stack, you will see various components of Kubernetes:

• Controller-manager is a core control loop which continuously watches the state of

clusters and takes actions if needed to bring it to the desired state.

• etcd is a highly available (HA) key-value pair store for all persistent data for the cluster.

The etcd server should only be accessible by Kubernetes API server as it may contain

sensitive information.

• kubectld is the daemon which runs kubectl.

©Rancher Labs 2017. All rights Reserved. 14

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

• kubelet is an agent node and runs on every node in the cluster to manage containers

running on that host.

• kubernetes is the API server which provides all CRUD operations on cluster through a

API.

• proxy is another component which is running on every node in Kubernetes cluster and

provides a simple network and load balancer across hosts.

• scheduler manages pods which are not yet assigned to nodes and schedules them.

• Rancher-kubernetes-agent manages the communication between Rancher and the

Kubernetes cluster

• Rancher-ingress-controller will leverage the existing Kubernetes load balancing

functionality within Rancher and convert what’s in the Kubernetes ingress to a load

balancer in Rancher.

2.4 How Rancher Extends Kubernetes for User-Friendly

Container Management

As you might have noticed in previous section, launching Kubernetes is a breeze in Rancher.
But Rancher has several features that make it easy to manage the cluster:

• Rancher simplifies Kubernetes networking by providing Rancher DNS as a drop-in

replacement for SkyDNS. The Kubernetes cluster can then span across multiple

resource pools or clouds.

• Rancher enables teams to set up and manage multiple Kubernetes environments, and

provides role-based access management (RBAC) for both teams and individuals for

each environments.

• Rancher’s intuitive user interface allows you to execute CRUD operations on all of

Kubernetes objects such as pods, replication controllers and services. Users can even

manage underlying containers, view logs for those containers, and execute shell right

from UI.

• Rancher has built-in credentials management.

• Rancher can provide access to kubectl from the Rancher UI itself.

• The Rancher load balancer allows traffic routing from hosts to Kubernetes services and

pods

2.4.1 Infrastructure Visibility

The Rancher UI provides complete visibility into the infrastructure on which Kubernetes clusters
are running. The infrastructure menu will list various resources as displayed below:

©Rancher Labs 2017. All rights Reserved. 15

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

The Hosts tab provides visibility into all hosts, the containers running in those hosts and their
overall status. You can edit host labels by editing host definitions here.

When you click on an individual host, you can view detailed information about the host:

©Rancher Labs 2017. All rights Reserved. 16

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

The second part of host screen shows details about the containers running on the host, the
ports open on that host and storage mounts used by containers, etc.

The containers menu provides information for all containers in the environment, including the
hosts on which they’re running, their IP addresses, and statuses etc. You can also search for
specific containers in the search bar at top.

©Rancher Labs 2017. All rights Reserved. 17

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

From context menu on right hand side, you can execute shell directly into the running container,
and view the container logs:

If you click on any single container from the list, you will see detailed, vital information about that
container such as CPU, memory, network and disk consumption. Information about labels,

©Rancher Labs 2017. All rights Reserved. 18

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

volumes and ports is also provided in bottom section. This level of detail and access to
underlying infrastructure provide a secure way to access the hosts.

2.4.2 Kubernetes Dashboard

As of Rancher 1.4, Rancher uses the Kubernetes Dashboard for providing a concise and uniform
view of your deployment

The left hand side menu provides quick navigation between namespaces and multiple types of
objects such as Services, Deployments, Secrets etc. The nodes section provides a quick overview
of the nodes in the system:

©Rancher Labs 2017. All rights Reserved. 19

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

For creating a new type of object, you can use the create option on right top corner. You can input
all parameters one by one or simply upload a JSON/YAML format file with specifications of the
object to be created.

2.4.3 GUI-Based CRUD Operations for Kubernetes

In this section, we will create a guestbook application using CRUD operations on Kubernetes
objects. We will use templates from the guestbook sample application in the Kubernetes
examples. We will show you how to create one service and one replication controller, which can
be used as a basis for other services and replication controllers. If you don’t have a copy of the
guestbook, ensure that you clone it before you proceed.

We will deploy following components one by one to deploy the complete Guestbook application:

• Service definitions for:

o FrontEnd component :

o Redis Master

o Redis Slave component

• Deployment definitions for:

o Front End

o Redis Master

o Redis Slave

Open the “frontend-service.yaml” and uncomment the line with content “type: LoadBalancer”, after
changes the code should look like:

https://github.com/kubernetes/kubernetes/tree/master/examples/guestbook
https://github.com/kubernetes/kubernetes/tree/master/examples/guestbook

©Rancher Labs 2017. All rights Reserved. 20

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:
 app: guestbook
 tier: frontend
spec:
 # if your cluster supports it, uncomment the following to automatically create
 # an external load-balanced IP for the frontend service.
 type: LoadBalancer
 ports:
 # the port that this service should serve on
 - port: 80
 selector:
 app: guestbook
 tier: frontend

Open the Kubernetes Dashboard, click on “Create” and upload the newlymodified service file.
Similarly also deploy other .yml files in the guestbook directory.

After you have created all Services and RCs, you will see the complete stack being created:

After a few minutes you will notice all deployments and PODs are in GREEN state:

©Rancher Labs 2017. All rights Reserved. 21

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

There are some key points to note here:

• There were three pods created for the frontend, based on the RC definition. It is a

Kubernetes best practice to not create pods directly and to only create them through

RCs.

• You can also get the details of each of the containers that are running in a pod, along

with some basic information about its status.

If you delete a POD, the replication controller will ensure that another POD is created
immediately.

Now let’s try to access the service we just deployed. Navigate to Services and you will notice
that the service we deployed with “LoadBalancer” type has created a public endpoint:

©Rancher Labs 2017. All rights Reserved. 22

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

And if you access the same, you will see the guestbook application:

If you are using a cloud provider, it is natural that the LoadBalancer type service will create a
load balancer and attach the containers to it. But in this case, Rancher is doing some work.
Returning to the Rancher dashboard, you will notice that Rancher has created a HAProxy load
balancer and abstracted the service being exposed:

©Rancher Labs 2017. All rights Reserved. 23

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

If you click on the Load Balancer above, you will see:

2.4.4 Usingkubectl - Credential Management and Web Access

Rancher provides a GUI-based way to interact with Kubernetes, which supplements kubectl, the
command line interface to Kubernetes. Rancher exposes this CLI through the UI; it can be
accessed by selecting Kubectl from the Kubernetes drop-down menu. You can then execute
commands through kubectl to get information or to change cluster configuration.

©Rancher Labs 2017. All rights Reserved. 24

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

You can also generate the configuration file from “Generate config” button at the top – and
along with a local executable of kubectl, interact with the Kubernetes cluster from your own
machine.

One of important things to understand in this context is how your access in UI will affect what
you do. Every user in a Rancher environment is either a “user” or an “admin”. As the name
suggests, the admin has all the privileges associated with the environment, whereas users can
be split further into specific roles (the same user can have different roles). The following table
explains four roles and their access level within the environment.

 Owner Member Restricted Read-Only
Operations on Stacks,
Services, and Catalog

Yes Yes Yes No

Operations on Hosts Yes Yes View Only View Only

Managing user access Yes No No No

2.4.5 Manage Kubernetes Namespaces

Namespaces are virtual clusters in Kubernetes that can sit on top of the same physical cluster.
They provide logical separations between teams and their environments as needed. You can
view existing namespaces in Kubernetes Dashboard by clicking on Namespace option in left
hand side menu:

©Rancher Labs 2017. All rights Reserved. 25

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

You can also add namespaces with simple YAML configuration:

apiVersion: v1
kind: Namespace
metadata:
 name: test-namespace

©Rancher Labs 2017. All rights Reserved. 26

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

3 Deploying a Multi-Service Application

3.1 Defining Multi-Service Application

In Chapter 2, we deployed a guestbook application to illustrate CRUD operations in Rancher (the
guestbook templates are here, detailed information and example application is available at here).
In this chapter, we cover the details of services, load balancing, service discovery and finally
persistence with cloud disk such as Google Cloud. You can also look at other examples such as
WordPress with MySQL (beginner level, and available here), and pet store example which is
advanced and must be done after finishing this basic exercise (available here).

The Guestbook application has three components:

• Frontend: The UI which takes user inputs and persists to Redis. There can be more than
one node for frontend component load balanced by a load balancer

• Redis Master: The master node of Redis used to write data from the frontend. At the
moment, Redis does not support multi-master out of the box; we will stick to a simple
single node master in this example.

• Redis Slave: Redis slave is used to read data by frontend. We are going to scale this to
two nodes so a load balancer will be needed.

3.2 Designing a Kubernetes service for an Application

Services are abstractions that hide the underlying changes in pods. Let’s define a service for the
frontend object and look at some important aspects of how it affects behavior.

apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:
 name: frontend
spec:
 type: NodePort
 ports:
 - port: 80
 - protocol: “TCP”
 - targetPort: 80
 selector:
 name: frontend

In the first block, we define a service named “frontend”: this will create a service object in
Kubernetes with a IP (usually referred to as the cluster IP). For all other services, the cluster IP is
resolved for the service name and traffic forwarded to the pods. Since the selector for this service
is “frontend”, this service will only target the pods which have a name label as frontend and are
running port 80. The selector expression is evaluated continuously and posted on EndPoint object
within Kubernetes. For example, if we scale from two pods to three, traffic will be routed to the
new pod.

The targetPort is same as port if not specified, and the default protocol is TCP; we can omit those
lines if we want to stick to defaults. One of key points to understand here is that “port” refers to
the Kubernetes exposed port, whereas targetPort is the port where the container is listening – but
none of these refer to port of host on which the pod is running. If one service wants to talk to

https://github.com/rancher/community-catalog/tree/master/kubernetes-templates/guestbook
https://github.com/kubernetes/kubernetes/tree/release-1.2/examples/guestbook/
https://github.com/kubernetes/kubernetes/tree/release-1.2/examples/mysql-wordpress-pd
https://github.com/kubernetes/kubernetes/tree/release-1.2/examples/k8petstore

©Rancher Labs 2017. All rights Reserved. 27

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

another service within Kubernetes cluster, the port of the service will be used. But if you want the
service to be exposed to the outside world we have to use NodePort or LoadBalancer in “type”
(Called ServiceType). If you don’t specify any value, then the default value is ClusterIP, which
allows connections only from within cluster.

NodePort proxies the port from service definition on the host and forwards all the traffic to intended
container and port. NodePort is chosen randomly from a pre-configured range, or can be specified
in the definition. The service is then available on each host on which a pod is running at NodePort.
NodePort can be used when you have only one node of a given component and don’t want to put
additional load balancer layer. NodePort is often used when you don’t want to use the load
balancer provided by the cluster, want to use an external one instead, or your cloud provider does
not fully support Kubernetes. The following screenshot shows the services and their type along
with other information.

You can also create services without a selector; this is done to abstract external services such as
a database or services in another Kubernetes namespace. Since the (pod) selector does not exist
in these cases, we have to manually create the EndPoint object so that the service refers to
external service. The service definition remains in same format except the selector block and
EndPoint declaration looks like the following:

apiVersion: v1
kind: EndPoint
metadata:
 name: frontend
subsets:
 addresses:
 ip: “192.168.17.99”
 ports:
 port: “8090”

3.3 Load Balancing using Rancher Load Balancing services

We have built the frontend service using NodePort in the earlier section; now let’s build the service
using LoadBalancer type. The definition of service is same except “type” has value of
“LoadBalancer”. Once the service is successfully created, navigate with the Rancher UI to the
Kubernetes menu, select “Infrastructure stacks” and look for the section labeled “kubernetes-
loadbalancers”. You will notice that a load balancer has been created:

©Rancher Labs 2017. All rights Reserved. 28

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

If you choose to edit the load balancer, you’ll see more options around scaling, routing etc. The
load balancer created by Rancher uses haproxy, and allows for additional configuration options
in the global and default sections.

Although this load balancer was created automatically as part of the service definition, we can
explicitly create a load balancer and with more fine-grained options. The system section has
option to add load balancer:

You can run a fixed number of containers of load balancer or you can choose to run one instance
of load balancer on each host. The number of instances of load balancer should be less than or
equal to number of hosts to avoid port conflict. If you try to create more load balancers than hosts,
then load balancer will wait for more hosts to come up and will be in activating state till more hosts
are available. Additionally, for fixed number of load balancers are affected by the scheduling rules
which we will go through shortly.

©Rancher Labs 2017. All rights Reserved. 29

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Rancher supports L4 load balancing and forwards the ports to targets. You can configure multiple
ports and services, and the load balancer will forward traffic to a combination of host and ports in
a round robin fashion.

The load balancer can also be configured as an L7 load balancer by setting some advanced
options. If you don’t configure the additional optional choices, then it will work like a L4 LB.

In the above screen, we can configure different hostnames and request paths to be routed to
different target services. For example, an incoming request to Rancher.com can be routed to a
web application, while Rancher.com/demo can be routed to a completely different web
application. Even wildcard can be used for example *.example.com for targeting a service. Since
you can define multiple rules – it is possible that there is an overlap in matching rules to incoming
requests and hence following precedence order is used:

1. HOSTNAME WITH NO WILDCARDS AND URL

2. HOSTNAME WITH NO WILDCARDS

3. HOSTNAME WITH WILDCARDS AND URL

4. HOSTNAME WITH WILDCARDS

5. URL

6. DEFAULT (NO HOSTNAME, NO URL)

Since the load balancer was designed as an L4 load balancer, and further enhanced to be an L7
load balancer, there is one catch you should keep in mind: if you define two services (let’s call
them S1 and S2) and two listening ports (P1 and P2), then the mapping will be done for all four
combinations of services and ports (S1-P1, S1-P2, S2-P1, S2-P2). This will introduce traffic from
the P1 to S2, or conversely, P2 to S1. To prevent this, you will need to add dummy rules as shown
in the example below (shown for S1 on port 81, and S2 on port 80).

©Rancher Labs 2017. All rights Reserved. 30

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

lb-test:
 ports:
 - 80:80
 - 81:81
 labels:
 io.Rancher.loadbalancer.target.service1: 80=80
 io.Rancher.loadbalancer.target.service1: dummy1:81=81
 io.Rancher.loadbalancer.target.service2: 81=81
 io.Rancher.loadbalancer.target.service2: dummy2:80=80
 tty: true
 image: Rancher/load-balancer-service
 links:
 - service1:service1
 - service2:service2
 stdin_open: true

If you have chosen one of the listening ports to be “SSL” then you get options to choose the
certificate for the same.

If you want to serve traffic from both HTTP and HTTPS, this can be achieved by using two listening
ports and mapping the target for the SSL-checked port to the HTTP port:

The load balancer also supports stickiness on requests using cookie. You can define a cookie for
all request, and responses and can be customized based on needs of session stickiness:

©Rancher Labs 2017. All rights Reserved. 31

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Labels and scheduling rules together provide a way to control which hosts will run the load
balancer. The ability to set conditions at the host-, container- and service-level altogether make it
possible to set very fine-grained scheduling policies in Rancher (note: if you have choose to run
only one container on each host, then you will only see host labels).

3.4 Service Discovery

There are two ways Kubernetes can implement service discovery: through environment
variables and through DNS.

Environment variables are set by Kubernetes. They support Docker linking, and simple semantics
like ${SERVICE_NAME}_SERVICE_HOST, etc. By convention, names are upper case, and
dashes are converted to underscores. If you run “docker inspect CONTAINER_ID” on one of the
containers, you will see that many variables have been set for the container. One of shortcomings
with environment variables is that you have to maintain their order of creation. Since the
environment variables are set for the container, you will need to bring up a dependent service
first, then the service using the environment variable.

 "Env": [
 "KUBERNETES_PORT_443_TCP_PORT=443",
 "FRONTEND_PORT_80_TCP_PORT=80",

https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/#/connect-with-the-linking-system

©Rancher Labs 2017. All rights Reserved. 32

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

 "FRONTEND_PORT_80_TCP_PROTO=tcp",
 "FRONTEND_PORT_80_TCP_ADDR=10.43.89.247",
 "REDIS_MASTER_SERVICE_PORT=6379",
 "REDIS_SLAVE_SERVICE_HOST=10.43.115.100",
 "KUBERNETES_PORT=tcp://10.43.0.1:443",
 "FRONTEND_PORT=tcp://10.43.89.247:80",
 "REDIS_SLAVE_SERVICE_PORT=6379",
 "REDIS_MASTER_PORT_6379_TCP=tcp://10.43.31.149:6379",
 "REDIS_SLAVE_PORT=tcp://10.43.115.100:6379",
 "REDIS_SLAVE_PORT_6379_TCP_ADDR=10.43.115.100",
 "KUBERNETES_SERVICE_PORT=443",
 "REDIS_MASTER_SERVICE_HOST=10.43.31.149",
 "REDIS_SLAVE_PORT_6379_TCP_PROTO=tcp",
 "REDIS_SLAVE_PORT_6379_TCP_PORT=6379",
 "KUBERNETES_SERVICE_HOST=10.43.0.1",

A cleaner way to implement service discovery is with the DNS server. In a Rancher environment,
the SkyDNS service is built-in with Kubernetes environment (and briefly discussed in section
Error! Reference source not found.).

New records are created in DNS when new services and pods are started, and they are updated
if those pods or services change. A service is mapped to its cluster IP and every service in a
namespace is directly accessible to other services. If you want to access a service in a different
namespace, this can be done with <service_name>.<stack_name>

3.5 Storage

In the example above, we did not use any persistent storage for storing Redis data. This means
the data will be lost if the host restarts, or the container is shifted to a new host. To make data
accessible and persistent across hosts, we will need to use some sort of persistent disk. Here,
we will use Google Cloud Engine persistent disk for our application before discussing other
storage options.

The storage in Kubernetes is achieved using PersistentVolume mechanism, where there are three
primary kinds of objects:
StorageClass: Specifies what kind of storage is available. For example, if you have a hard disk
and solid state disk both available, storages available, then you might define two StorageClasses:
HD, and SSD

PeristentVolume: This is the actual storage on network that is provisioned by either an
administrator in advance (Static Provisioning), or on demand in by a cloud provider (Dynamic
Provisioning). This object abstracts the underlying storage for the Kubernetes user; underlying
storage can be any NFS, EBS, etc.

PesistentVolumeClaim: This represents the request by a pod or user for attaching a storage to
a running container. If a match is found from pool of persistent volumes, then it is used. Otherwise
dynamic provisioning is requested.

Note that every persistent volume follows a lifecycle which is roughly described in below diagram:

©Rancher Labs 2017. All rights Reserved. 33

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

We will assume dynamic provisioning in this example. First you define a storage class to define
what kind of storage you offer:

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: fast
provisioner: kubernetes.io/gce-pd
parameters:
 type: disk-ssd

And then you request a claim in the container spec for the available storage classes:

 volumeMounts:
 - name: redis-disk
 mountPath: /cassandra-datastore
 volumeClaimTemplates:
 - metadata:
 name: redis-datastore
 annotations:
 volume.beta.kubernetes.io/storage-class: fast

We have used the Google Cloud Engine persistent disk in this example, but Kubernetes provides
some more types of persistent volumes. The table below provides a quick overview of some key
volume types:

Volume Type Description

emptyDir An initially empty directory used by container to store data. The data
persists on host across container crashes, but if the pod is removed for
any reason then data in emptyDir is deleted.

hostPath Mounts a directory from the host into container. While most
applications would not want to use this there are some useful cases for

Provision
(Static/Dynamic)

Bind

UseRelease

Reclaim/Recycle

©Rancher Labs 2017. All rights Reserved. 34

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

example a container running cAdvisor can mount and look at
/dev/cgroups

gcePersistentDisk A Google cloud engine disk which is unmounted when container is
removed but can be re-mounted while data persists. A gce PD can also
be mounted in READ only mode on multiple containers. The disk must
be created/available in google cloud engine before it can be used.

awsElasticBlockStore Similar to gcePersistentDisk, persists beyond container lifecycle. Must
be created before using.

nfs A NFS server which can be mounted by multiple containers. NFS
allows writing to multiple containers.

Flocker Flocker is an open source cluster volume manager. Flocker volumes
are not tied to the lifecycle of the container to which it is mounted; data
written to these volumes persists beyond the lifetime of the container.

gitRepo Mounts an empty directory and then clones the content of a Git repo
into that directory. Especially useful when you want to fetch
configuration or standard files from a repo.

Secret Secrets can be mounted as volumes (for example for passwords).

downloadAPI Mounts an empty directory, then copies data from API into that
directory in plain text format.

3.6 Secrets

In a large cluster where many sensitive components’ data and code components might be
running, it is important that the secrets and authentication are managed well. Kubernetes
provides multiple ways to manage authentication between systems. We will create a secrets file
in context of our application and go over service accounts.

Creating Secrets
The simplest way to create secrets is to use the kubectl command line and pass files which have
value of username and password:

kubectl create secret generic redis-pass --from-file=./username.txt --from-file=./password.txt

The above command assumes username.txt has username and password.txt has the password.
The username and passwords are B64 encoded and stored in object named “redis-pass” in above
case. We can also manually encode the values of username/password into b64 and then create
a secret object:

apiVersion: v1
kind: Secret
metadata:
 name: redis-pass
type: Opaque
data:
 password: c3VwZXJ0b3VnaHBhc3N3b3Jk
 username: c3VwZXJ1c2Vy

Using Secrets
Secrets can be used as data volumes or environment variables within a pod. A secret can be
used by more than one service or pod. For example, the following code snippet shows how to use
the secret as an environment variable:

©Rancher Labs 2017. All rights Reserved. 35

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username

Service accounts are another way to manage communication between services or pods, and are
typically used to access an API server to derive the share state of cluster and interact with cluster.
By default, all calls happen through a “default” service account, but additional service accounts
can be created. Keep in mind that service accounts are meant for non-human components
and should not be mixed with actual user accounts created for humans to access cluster.
A service account definition looks like this:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: elk

In the definition for a replication controller, you can specify the service account to be used:

spec:
 serviceAccount: elk

You can add secrets to the service account as well (for example, for fetching Docker images from
a secured registry or for authenticating with certain systems).

©Rancher Labs 2017. All rights Reserved. 36

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

4 Container Operations

4.1 Continuous Deployment – Service Upgrades and Rollbacks

In Kubernetes, there are two options for deployments. Rolling-updates are an older method of
doing deployments; these work only with replication controllers. We recommend using the new
Deployment object for any new application deployments. We will quickly go over the rolling-
update method, and then cover deployment objects in more detail.

For the rolling-update method, first create a replication controller with 4 replicas and nginx
version 1.7.9. Wait for the replication controller to bring all 4 pods up:

apiVersion: v1
kind: ReplicationController
metadata:
 name: my-nginx
spec:
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Once the RC is up, let’s go to the kubectl web console in one tab, and open the replication
controller section in another browser tab.

kubectl rolling-update my-nginx –image=nginx:1.9.1

You will notice in the logs that Kubernetes decided to deploy only one pod at a time, and
maintained a maximum of 5 pods at any given time.

If we switch to the Kubernetes dashboard, you will notice it has created a new replication
controller and is deploying new images in the new RC.

©Rancher Labs 2017. All rights Reserved. 37

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

As the update moves forward, more pods are added to new replication controller and removed
from the previous one:

Essentially, rolling-updates are a way to upgrade a given number of pods at a time by moving
pods from one replication controller to another.

Deployments are the recommended method for managing updates to pods and replication
controllers. With a Deployment object, you specify only the target state to be achieved, and the
Kubernetes deployment controller will ensure the state is changed accordingly. Specifying the
desired state in a declarative manner gives Deployments a lot of flexibility and power. For
example, Deployments in Kubernetes are great for the following use cases:

(1) To create a new replication controller with six nodes of nginx, you can use a Deployment

and specify the desired state

(2) You can check status of a deployment for its success or for failures

(3) You can rollback an earlier deployment if the version is found to be unstable

(4) You can pause and resume a deployment – this is especially handy for executing canary

deployments in which certain resources are upgraded and then deployment is paused. If

the results look positive, then the deployment can be resumed (otherwise they can be

aborted).

(5) You can look at history of deployment

©Rancher Labs 2017. All rights Reserved. 38

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

We will first look at a couple of use cases from this list, then some parameters that can be fine-
tuned to alter behavior of Deployments.

First, let’s create a Deployment. Add a replication controller and paste the following block. Note
that once you create a Deployment from one of the options, you won’t see it in the UI but you
can check it from kubectl command console. However, you will see associated pods in the
appear in the UI as they’re created. You can keep a tab open with kubectl command console to
monitor things as they happen.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Once you create the deployment using Add Service/RC option, you can see the Deployment in
kubectl:

Now let’s upgrade the Deployment to a higher version of nginx. Note that once upgraded, you
you are unable to add the same Deployment throught the UI, as it will conflict with the previous
name. So let’s execute the following command in kubectl:

kubectl edit deployment/nginx-deployment

This will open an editor inside the console. Update the nginx image version from 1.7.9 to 1.9.1
and save the file. Once we have saved, we can watch the Deployment to check how the
upgrade is going:

©Rancher Labs 2017. All rights Reserved. 39

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

We can also check history of replication controllers to see how the Deployment created a new
replication controller and deactivated the old one:

We can rollback to previous version, since we did not provide “--record” flag while executing
commands – we see nothing under “change-cause”.

The “kubectl describe deployments” command will give you a lot more information on
deployments.

©Rancher Labs 2017. All rights Reserved. 40

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

4.1.1 A closer look at deployments

There are quite a few parameters in the deployment YAML file, but in this section we will look at
how some of important parameters within the deployment file can be tweaked to meet different
requirements.

Strategy
The strategy parameter has two types: ReCreate and RollingUpdate. Syntax for the strategy
type looks like below:

.spec.strategy.type=Recreate
.spec.strategy.type=RollingUpdate

Recreate will, unsurprisingly, recreate existing pods by killing then redeploying them. Similarly,
RollingUpdate will apply a rolling update to the existing pods. For RollingUpdates there are
additional parameters to control how the rolling updates are done.

.spec.strategy.rollingUpdate.maxUnavailable
.spec.strategy.rollingUpdate.maxSurge

For rolling updates, only a certain number of pods are taken down and updated at one time; this
process is repeated until all the pods are upgraded. MaxUnavailable specifies how many pods
can be down at any time during an upgrade. This can be an absolute number, or a percentage
of pods. The default value for MaxUnavailable is 1.

MaxSurge is another option which controls how many pods can be created over and above the
desired number of pods. Similar to MaxUnavailable, this parameter can be set as an absolute
number or as a percentage, and also defaults to 1. If we set MaxSurge and MaxUnavailable
both to 20%, for ten pods, during deployment Kubernetes will immediately scale to 12 pods in
total and then 2 pods will be taken out of the older pool.

.spec.rollbackTo

©Rancher Labs 2017. All rights Reserved. 41

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

.spec.rollbackTo.revision

rollbackTo contains the configuration to which the Deployment is rolling back. Setting this field
will cause a rollback and the field will be removed from Deployment object. You can further
specify the exact “revision” to which rollback should take place. The default is considered the
last version in history but specifying revision is helpful in some cases.

4.2 Rancher Private Registry Support for Kubernetes

In Rancher, you can configure private registries, and then use container images from those
registries for template definitions. Rancher supports Docker Hub, Quay.io or any other private
registry. You can also configure an insecure or internal certificate registry, though these require
bypassing a certificate check in Docker configuration files on all nodes. Each environment
requires its own registry assignment(s).

To add a new registry, go to Infrastructure  Registries. You will see if any registry is already
configured before adding a new one (adding a custom repository requires entering additional
information):

Once you have added a registry, you can access its container images with following format of
the image:

[registry-name]/[namespace]/[imagename]:[version]

By default, the repository is assumed to be Docker Hub. If you are using an image from Docker
Hub, you can use the short form of the above:

[imagename]:[version]

If a registry is insecure, you need to add an additional parameter in DOCKER_OPTS in the
Docker configuration file.:

DOCKER_OPTS="$DOCKER_OPTS --insecure-registry=${DOMAIN}:${PORT}"

©Rancher Labs 2017. All rights Reserved. 42

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

If you are using a certificate with the repository that is internally signed, then you need to add
the certificate to certs.d directory of Docker and append the certificate to the certificate chain.
This will need to be completed for all hosts and requires a restart of Docker daemon:

Download the certificate from the domain
$ openssl s_client -showcerts -connect ${DOMAIN}:${PORT} </dev/null 2>/dev/null|openssl x509 -
outform PEM >ca.crt
Copy the certificate to the appropriate directories
$ sudo cp ca.crt /etc/Docker/certs.d/${DOMAIN}/ca.crt
Append the certificate to a file
$ cat ca.crt | sudo tee -a /etc/ssl/certs/ca-certificates.crt
Restart the Docker service to have the changes take affect
$ sudo service Docker restart

Once a registry is added, there are certain actions that can be done and it is important to
understand how it affects behavior.

• You can edit the registry to re-enter username, email or password

• You can deactivate a registry. After deactivation,

o No new images can be fetched from the deactivated registry (but images already

in use will continue to work).

o Any user who has access to the environment can re-activate a deactivated

registry without being asked for his or her password; if a registry should not be

re-activated, it’s best to delete it.

4.3 Container Monitoring

4.3.1 Monitoring with Prometheus

Prometheus is a modern and popular monitoring and alerting system, built at SoundCloud and
eventually open sourced in 2012 – it handles multi-dimensional time series data really well. We
will deploy a full Prometheus suite to show you what all we can monitor in a Kubernetes cluster
using Prometheus. We will deploy the Prometheus stack using Helm Chart. We will discuss the
Helm chart in Section 5 in detail. Please note that the official helm chart for Prometheus needs
persistent disk to start. You can also check out detailed blog post on converting Cattle templates
to Kubernetes templates at Rancher blog here. To install Prometheus, from Kubectl shell:

helm install --name prom-release stable/prometheus

Below is a quick overview of how each component participates in monitoring:

• Prometheus: the core component that scrapes and stores data.

• Prometheus node exporter: gets host level metrics and exposes them to Prometheus.

http://rancher.com/converting-prometheus-template-cattle-kubernetes/
http://rancher.com/converting-prometheus-template-cattle-kubernetes/

©Rancher Labs 2017. All rights Reserved. 43

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

• Ranch-eye: is an haproxy and exposes cAdvisor stats to Prometheus

• Grafana: visualization for data

• InfluxDB: time series database specifically used to store data from Rancher server which

is exported via the Graphite connector for Rancher.

• Prom-ranch-exporter: is a simple node.js application which helps in querying Rancher

server for states of a stack or service.

Once Prometheus has been successfully deployed, we can examine the various dashboards
available in Grafana to see what data is available. Note that you will have to use the IP for the
host where Grafana container is deployed and NodePort for the Grafana service. Grafana has
five distinct dashboards for different use case; let’s cover these one by one.

Container Stats
Container stats provides information on the host machines coming from cAdvisor and from the
Prometheus Rancher exporter.

©Rancher Labs 2017. All rights Reserved. 44

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Host Stats
The host stats dashboard shows the metrics related to the host, as gathered by Prometheus.

Prometheus Stats
The Prometheus Stats dashboard contains information about Prometheus itself, such as how
long the Prometheus service has been running, scrape duration, and more.

Rancher Stats

©Rancher Labs 2017. All rights Reserved. 45

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

The Rancher Stats dashboard uses the Rancher graphite connector to provide information

about Rancher. Rancher graphite needs to be configured to point to the InfluxDB graphite host
and NodePort. Once this is done, you will need to restart the Rancher server. The metrics are
stored in Rancher DB in InfluxDB and then picked up by Grafana for visualization.

Stack Status – Prometheus
Stack status pulls information from the Rancher API about the health of individual containers.

4.4 Monitoring with Heapster

Heapster is a framework for monitoring and analyzing the performance of computing clusters, and
acts as an aggregator of performance data fetched from Kubernetes. It exposes a variety of
metrics at the node, container, pod, and namespace level through a REST endpoint. Heapster
natively supports Kubernetes and CoreOS, and a variety of backends can be used to store and
visualize the data. Data for all containers on a host is fetched by cAdvisor, which is then integrated
into a kubelet binary. The data is queried by Heapster and aggregated based on pods, services
etc. The data is then stored into one of the configured backends, such as InfluxDB.

©Rancher Labs 2017. All rights Reserved. 46

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Heapster is already installed inside the kube-system namespace in the Kubernetes cluster
created using Rancher (You can take a look at manifests for Heapster here:). If you switch to
kube-system namespace in Dashboard, you will see the components related to Heapster
deployed:

Notice that the Heapster container takes its arguments for source and target based on where the
data will be stored.

spec:
 containers:
 - name: Heapster
 image: kubernetes/Heapster:canary
 imagePullPolicy: Always
 command:
 - /Heapster
 - --source=kubernetes:https://kubernetes.default
 - --sink=influxdb:http://monitoring-influxdb:8086

https://github.com/kubernetes/heapster/tree/master/deploy/kube-config/influxdb

©Rancher Labs 2017. All rights Reserved. 47

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Change the “influxdb-grafana-controller.YAML” to use the following key-value pair (instead of
what is provided in the YAML file).

- name: GF_SERVER_ROOT_URL
value: /

We will change the type of service for the Grafana Dashboard to LoadBalancer so we can
access the UI of the Heapster dashboard. Edit the “Monitoring – Grafana” service and change
the type from “Cluster IP” to “LoadBalancer”

Once you have setup Heapster, you will notice metrics will start flowing into the Grafana UI.

©Rancher Labs 2017. All rights Reserved. 48

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

4.5 Ingress Support

Typically, services and pods have IP addresses which are only reachable within the cluster. But
in many practical scenario, there is a need to provide an externally reachable URL or to provide
a virtual host based on name etc. Ingress are set of rules which enable incoming connections to
reach cluster services or pods. Ingress was introduced in Kubernetes 1.1 and in addition to an
ingress definition, you also need an ingress controller to satisfy those rules.

Imagine an ingress resource as set of rules, and the ingress controller as the engine which
satisfies those rules. Rancher comes with a built-in ingress controller and converts ingress rules
into load balancing functionality. Rancher listens to server events on Kubernetes, and creates
and updates the ingress controller accordingly. Let’s set up a simple ingress, and then explore
more complex use cases where ingress can be useful.

The first step is to create a service which we want to expose. Here we will use a simple nginx
container, and create a service and replication controller for it:

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
 labels:
 k8s-app: nginx-service
spec:
 ports:
 - port: 90
 targetPort: 80
 protocol: TCP
 name: http
 selector:
 k8s-app: nginx-service

apiVersion: v1
kind: ReplicationController
metadata:

©Rancher Labs 2017. All rights Reserved. 49

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

 name: nginx-service
spec:
 replicas: 1
 selector:
 k8s-app: nginx-service
 template:
 metadata:
 labels:
 k8s-app: nginx-service
 spec:
 terminationGracePeriodSeconds: 60
 containers:
 - name: nginx-service
 image: nginx:latest
 ports:
 - containerPort: 80

This will simply create an nginx container, wrapped with a service. Note that with this
configuration, there is no way to access the service from outside of the cluster. To create, view,
and delete an ingress you will have to use kubectl command line. A sample ingress definition
looks like this:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: simplelb
spec:
 rules:
 - host: ingress.example.com ## The incoming host name
 http:
 paths:
 - path: /test ## Path to service
 backend:
 serviceName: backend-service
 servicePort: 90 ## service_port

In the above example, we have defined a single rule with a host, path and corresponding backend
service and port. We can define multiple host and path combinations pointing to backend services.

For our nginx service, we will define simple ingress as shown in the code snippet below. Since
host is not specified, it defaults to an asterisk “*” and the path defaults to root path.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: simplelb
spec:
 backend:
 serviceName: nginx-service
 servicePort: 90

Once you have created the ingress rule, you will notice that Rancher automatically creates a
corresponding load balancer. To view the load balancer, you can go to the Kubernetes System
view.

©Rancher Labs 2017. All rights Reserved. 50

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

As you can see, a load balancer and appropriate routing has been created by Rancher based
on ingress rules definition. If we now click the Host IP at port 80, we can see the nginx
hompage:

4.5.1 Ingress Use cases

Host based routing
Multiple host URLs can be diverted to different services by defining ingress rules through a
single load balancer.

 - host: foo.bar.com
 http:
 paths:

©Rancher Labs 2017. All rights Reserved. 51

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

 - backend:
 serviceName: nginx-service-1
 servicePort: 90
 - host: bar.foo.com
 http:
 paths:
 - backend:
 serviceName: nginx-service-2
 servicePort: 90

Path based routing
Different paths of a service can be load-balanced with ingress rules:

spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: nginx-service-1
 servicePort: 90
 - path: /bar
 backend:
 serviceName: nginx-service-2
 servicePort: 90

Scaling ingress
In default configuration, the ingress rules definition will create a single load balancer on a single
host. You can use annotations to create multiple load balancers spread across multiple hosts
and using a non-default port. For the following example to work, you will need at least two
Kubernetes nodes with port 99 available:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: scaledlb
 annotations:
 scale: "2"
 http.port: "99"
spec:

Ingress with TLS
Ingress can be also be set up with TLS. As a prerequisite, you will need to upload the certificate
in Rancher. You can then use TLS by specifying the port and the secretname in the tls field:

metadata:
 name: tlslb
 annotations:
 https.port: "444"
spec:
 tls:
 - secretName: foo
 backend:

4.6 Container Logging

©Rancher Labs 2017. All rights Reserved. 52

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

With large container deployments, it is important to collect log data from the containers for
analysis. The container logs might contain valuable information for finding the root cause of any
issues. In a Kubernetes cluster, there are a few functionalities required to build a logging platform:

• Collecting logs from containers running on a host

• Forwarding the logs to a central logging platform

• Formatting, filtering, analyzing and visualizating the logs.

There can be more areas in the platform such as alerting, monitoring etc. but we will not cover
those here.

For analysis and visualization, we will use the famous ELK (Elasticsearch, Logstash, Kibana)
stack. To collect and forward the logs to the logging platform, we will use LogSpout (though there
are other options like FluentD available).

If you are running Kubernetes on Google Cloud Platform, you also have the option of using Google
cloud logging services to analyze and visualize the logs (in addition to using the ELK stack on
Google Cloud).

4.6.1 Using ELK Stack and logspout

Let’s first set up a simple ELK cluster on Kubernetes. In the real world, Elasticsearch should be
set up with data, client and master as separate components so that they can be scaled easily
(there are templates and detailed documentation for Kubernetes here). For Logstash and Kibana,
we will use the images and templates developed by Paulo here with some minor modifications.

Let’s first create service for Elasticsearch. Note that we are creating the service in the “elk”
namespace.

apiVersion: v1
kind: Service
metadata:
 name: elasticsearch
 namespace: elk
 labels:
 component: elasticsearch
spec:
 type: LoadBalancer
 selector:
 component: elasticsearch
 ports:
 - name: http
 port: 9200
 protocol: TCP
 - name: transport
 port: 9300
 protocol: TCP

Similarly, the replication controller is also created in the elk namespace.

apiVersion: v1
kind: ReplicationController
metadata:
 name: es
 namespace: elk
 labels:
 component: elasticsearch

https://github.com/kubernetes/kubernetes/tree/release-1.2/examples/elasticsearch/production_cluster
https://github.com/pires/kubernetes-elk-cluster

©Rancher Labs 2017. All rights Reserved. 53

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

spec:
 replicas: 1
 template:
 metadata:
 labels:
 component: elasticsearch
 spec:
 serviceAccount: elasticsearch
 containers:
 - name: es
 securityContext:
 capabilities:
 add:
 - IPC_LOCK
 image: quay.io/pires/docker-elasticsearch-kubernetes:1.7.1-4
 env:
 - name: KUBERNETES_CA_CERTIFICATE_FILE
 value: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 - name: NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: "CLUSTER_NAME"
 value: "myesdb"
 - name: "DISCOVERY_SERVICE"
 value: "elasticsearch"
 - name: NODE_MASTER
 value: "true"
 - name: NODE_DATA
 value: "true"
 - name: HTTP_ENABLE
 value: "true"
 ports:
 - containerPort: 9200
 name: http
 protocol: TCP
 - containerPort: 9300
 name: transport
 protocol: TCP
 volumeMounts:
 - mountPath: /data
 name: storage
 volumes:
 - name: storage
 emptyDir: {}

As you may have noticed, we are using emptyDir type storage. This type is good for our quick
demo, but for real-world use cases, it is preferable to use persistent volumes.

The templates for Logstash and Kibana are very similar and you can check them out here.
However, let’s look at some of the important aspects before we launch the full stack:

For Kibana, we are provide the Elasticsearch URL as an environment variable:

 - name: KIBANA_ES_URL
 value: "http://elasticsearch.elk.svc.cluster.local:9200"
 - name: KUBERNETES_TRUST_CERT
 value: "true"

We are using a custom Logstash image, and again the Elasticsearch URL is provided as an
environment variable:

https://github.com/infracloudio/elk-kubernetes-template

©Rancher Labs 2017. All rights Reserved. 54

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

 - name: ES_HOST_NAME
 value: http\:\/\/elasticsearch.elk.svc.cluster.local\:9200

Once all three containers are up and running you can do a quick verification with following checks
and confirm there are no issues in ELK setup.

• Elasticsearch will be reachable at container port 9200 and corresponding host/NodePort

combination if the stack has been set up correctly. You should see text similar to the one

below in response:

{
 "status" : 200,
 "name" : "Master Mold",
 "cluster_name" : "myesdb",
 "version" : {
 "number" : "1.7.1",
 "build_hash" : "b88f43fc40b0bcd7f173a1f9ee2e97816de80b19",
 "build_timestamp" : "2015-07-29T09:54:16Z",
 "build_snapshot" : false,
 "lucene_version" : "4.10.4"
 },
 "tagline" : "You Know, for Search"
}

• Kibana UI will be reachable at container port 5601 and corresponding host/NodePort

combination. When you begin, there won’t be any data in Kibana (which is expected as

you have not pushed any data).

The next step is to set up the log aggregator from container hosts, and forward them to Logstash

for further processing. Here, we will use Logspout, a generic log forwarder. Logspout runs inside

a Docker container itself, and attaches to all containers running. The logs from all containers are

forwarded to the configured destination. In our case, the destination is Logstash so we will need

Logstash plugin. We have built a custom Docker image which has Logstash plugin baked in

(source code here). Logspout takes a parameter “ROUTE_URIS” which is where the logs are

routed to. Following is the template for the replication controller for LogSpout:

apiVersion: v1
kind: ReplicationController
metadata:
 name: logspout
 namespace: elk
 labels:
 component: elk
 role: logspout
spec:
 replicas: 1
 selector:d
 component: elk
 role: logspout
 template:
 metadata:
 labels:
 component: elk
 role: logspout
 spec:
 serviceAccount: elk

https://github.com/infracloudio/logspout-logstash-docker/blob/master/Dockerfile

©Rancher Labs 2017. All rights Reserved. 55

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

 containers:
 - name: logspout
 image: infracloud/logspout-Logstash-docker
 env:
 - name: ROUTE_URIS
 value: "Logstash://Logstash.elk.svc.cluster.local:5000"
 volumeMounts:
 - mountPath: "/var/run/docker.sock"
 name: dockersock
 volumes:
 - hostPath:
 path: "/var/run/docker.sock"
 name: "dockersock"

For this to work, Logstash needs to be listening in on port 5000 with UDP. We have already put
this configuration into our Docker container for Logstash. Now you should see the following logs
in LogSpout pod:

And in Logstash:

©Rancher Labs 2017. All rights Reserved. 56

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Assuming all above steps succeeded, data should be flowing in Elasticsearch now. We can
verify this by looking at indexes of Elasticsearch:

The final step is to configure which indexes Kibana should look for in Elasticsearch. Once you
have configured the pattern with Logstash-*, you will see the log data trending in default
dashboard of Kibana:

What we have set up is a simple data pipeline, with all components required for aggregating,
logging, analyzing, and visualizing log data.

4.7 Auto Scaling

We can achieve auto scaling in Kubernetes in a Rancher environment using Kubernetes native
auto scaling.

In Kubernetes, manual scaling can be implemented using the “kubectl scale” command on
almost all resource types. Auto scaling in Kubernetes is achieved by using the Horizontal Pod
Autoscaling (HPA). Let’s take a closer look at how HPA works.

• HPA Prerequisites:

o HPA is triggered by pod CPU utilization.

o Heapster is required for querying CPU utilization

©Rancher Labs 2017. All rights Reserved. 57

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

o The containers in the pod must have a CPU request set; HPA will not considering

the pods without a CPU request for auto scaling.

• Working

o HPA is designed as an API resource and controller – resource invokes actions

on controller and controller makes sure that target state is achieved.

o HPA watches CPU of pods at an interval which is controlled by parameter --

horizontal-pod-autoscaler-sync-period in controller manager.

o The actual CPU utilization is compared with the one requested by pod containers

based on algorithm here

o To change the state to desired state a new resource called “Scale” was

introduced. The scale resource can be queried for RC/deployment/Replica Set to

retrieve current number of resources and then send request to adjust desired

number of resources.

o Please note that some of these resource types and APIs were introduced in

versions as latest as 1.2 so the grouping of APIs might change in later versions.

• Via kubectl

o The auto scaling feature can also be interacted with by kubectl CLI. For example

to scale a replication controller named frontend when the CPU utilization hits

85%:

kubectl autoscale rc frontend --max=7 --cpu-percent=85

4.8 Kubernetes System Stack Upgrades in Rancher

If you look at the System menu in Kubernetes tab, you will see all containers which running in
the Kubernetes stack. This entire stack has been deployed via Rancher:

By clicking on the Compose YAML icon, you can also view the docker-compose and rancher-
compose files which together have created the Kubernetes stack:

https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/design/horizontal-pod-autoscaler.md#autoscaling-algorithm

©Rancher Labs 2017. All rights Reserved. 58

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

As you can see, the containers used for the Kubernetes stack use specific versions of
Kubernetes and Rancher. For example, the controller-manager container uses
Rancher/k8s:v1.2.0-Rancher-1. If we want to upgrade this container to a newer version, we can
go to the context menu on right hand side, and choose upgrade (or simply click on upgrade
icon). We can upgrade the version of container and control certain options such as batch size
and the delay between batch upgrades.

The upgrade process creates a new version of the container and keeps it on standby until you
choose “Finish upgrade”. You can also rollback at this if the newer version has potential issues.

Let’s look at details of controller-manager – you will notice that there is one node running, one
stopped, and that the upgrade is waiting for confirmation on top right hand side. At this point, we
can inspect the logs to verify the upgrade and decide to upgrade or rollback.

©Rancher Labs 2017. All rights Reserved. 59

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

If upgrade option is chosen – the new container will continue running and old one will be
discarded. If rollback is chosen, then the inverse happens: the new one is stopped and old one
is reinitialized.

If a container has a sidekick or data-container attached to it, you can choose to upgrade both of
them together too.

Although it is possible this way to upgrade individual components, it is not advisable to do so.
Starting with Rancher v1.1, Rancher provides an “Upgrade available” button right at top of
Kubernetes cluster when the upgrade is available:

You can choose the versions of Kubernetes and Rancher for the upgrade:

©Rancher Labs 2017. All rights Reserved. 60

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Rancher then will only upgrade components which have changed:

It is recommended to upgrade the entire Kubernetes stack through the upgrade menu, as this
method has been tested and verified to work with all components in the stack.

©Rancher Labs 2017. All rights Reserved. 61

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

5 Managing packages in Kubernetes

5.1 Introduction to Helm and Charts

When we deployed some sample apps in earlier sections, you might have noticed that we had to
deploy multiple services to create a complete application. In a way, multiple manifests can be
grouped into a single package which can be more easily shared. This is the exact problem solved
by Helm, the package manager for Kubernetes.

Let’s first understand some basic terminology Helm package management uses:

A chart is a package in Helm terminology that contains all that is needed to run a specific
application on Kubernetes

Tiller is the server that runs inside the Kubernetes cluster and handles installing,
managing and tracking the charts in the cluster. Helm is the client portion, or CLI, with
which users interact and issue commands. Helm client talks to Tiller server.

Charts are stored in a repository, typically in a version-controlled source control system such as

Github. The official chart repository can be found here. Finally, when a user installs a chart into a
cluster, a new release is created and tracked.

5.2 Structure of Helm Charts

A chart for a given application can contain the following files:

Chart.yml Information about the chart in YAML format

LICENSE License info (if applicable) for chart

README.md README file

values.yml Configuration values which could be used as default if the user does
not provide any values

charts/ Any other charts on which this chart depends

templates/ Template files which are combined with values from values.yml and
CLI provided values to produce manifests

templates/Notes.txt Any info about usage of charts

https://github.com/kubernetes/charts

©Rancher Labs 2017. All rights Reserved. 62

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

5.3 Using Helm

Rancher comes with Tiller, Helm, and the Kubernetes CLI built-in. If you navigate to Kubernetes
CLI in Rancher UI, you can quickly verify that Helm is configured appropriately:

To search charts in the repo:

To get more information about a specific chart you can inspect the chart:

©Rancher Labs 2017. All rights Reserved. 63

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

Now let’s install the Jenkins chart so we can track it later:

We can then get the status of latest deployment

©Rancher Labs 2017. All rights Reserved. 64

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

What we have done is installed the stock Jenkins chart without any customization. In the real
world we need to customize the package by changing certain parameters. The default
parameters are in values.yml and we can override that by using a custom values.yml file.

helm install --name jenkins-r1 -f values.yaml stable/jenkins

©Rancher Labs 2017. All rights Reserved. 65

DEPLOYING AND SCALING KUBERNETES WITH RANCHER

6 Additional Resources

Documentation

o Kubernetes documentation: primary resource for Kubernetes concepts,

components, and best practices

o Rancher documentation: primary resource for Rancher concepts, components, and

best practices

o Helm Documentation: Provides in depth information about using Helm package

manager in Kubernetes

Rancher Articles and Walkthroughs

The following articles, previously published on Rancher.com, may be of interest for users

interested in running containerized applications at scale, and making the most of Rancher’s

capabilities

o Launching Microservices Deployments on Kubernetes with Rancher: an

additional quick walkthrough on using Kubernetes with Rancher

o Converting a template from Cattle to Kubernetes: walks through the process of

taking a template used in Rancher’s Cattle framework, and making it easily

deployable in a Kubernetes environment.

o Rancher Controller for the Kubernetes Ingress Feature: An in-depth look on how

Rancher works with one of the key features of Kubernetes

o Creating a MongoDB Replica Set with the Rancher Kubernetes Catalog: a

walkthrough introduction to using replica sets and the Rancher Catalog.

Additional eBooks

o Building a CI/CD Pipeline with Rancher and Docker: a hands-on guidebook for

introducing containers into your build, test, and deployment processes

o Comparing Kubernetes, Mesos, and Docker Swarm: an in-depth guide comparing

the most common orchestration tools on the market

http://kubernetes.io/docs/
http://docs.rancher.com/Rancher/latest/en/
https://github.com/kubernetes/helm/blob/master/docs/index.md
http://rancher.com/getting-micro-services-production-kubernetes/
http://rancher.com/converting-prometheus-template-cattle-kubernetes/
http://rancher.com/rancher-controller-for-the-kubernetes-ingress-feature/
http://rancher.com/creating-a-mongodb-replicaset-with-the-rancher-kubernetes-catalog/
http://info.rancher.com/cicd-with-docker-ebook
http://info.rancher.com/comparing-kubernetes-mesos-swarm

Rancher is a trademark of Rancher Labs, Inc. in the United States and/or other countries. Other brand
names mentioned herein are for identification purposes only and may be trademarks of their respective
holder(s). Information is subject to change without notice. © 2017 Rancher Labs, Inc. All rights reserved.
March 2017.

66

7 About the Authors

Girish Shilamkar is founder and CEO at infraCloud technologies. Girish started hacking
on distributed file systems right from his university days. Girish has worked on HPC file
systems, Lustre, GPFS and has multiple contributions to Linux Kernel & Apache
Cloudstack projects. Girish has worked with startups to build storage and cloud platforms
while providing technical leadership and building high-performance teams. Girish's
interests are Containers, Microservices, Cloud adoption and migration, QA Engineering.
When not at screen, Girish can be found on the golf course, driving through mountains.

Vishal Biyani is founder & CTO at infraCloud technologies. Vishal has worked across the
whole spectrum of SDLC from developing code to deploying it and supporting customer
tickets. Vishal's roles spanned from consulting Fortune 500 customers on DevOps
assessment to hands down platform building for internet scale companies. Vishal is a
DevOps practitioner, likes to work in Agile environments with focus on TDD. Vishal's
interests span continuous delivery, enterprise DevOps, containers and security. When
not typing, Vishal can be found cycling, photographing or flipping pages.

infraCloud technologies is a programmable infrastructure company with leadership in
building highly scalable Container, Cloud & DevOps solutions. infraCloud is also a
Rancher partner

https://www.linkedin.com/in/girishshilamkar
https://www.linkedin.com/in/vishalbiyani
http://infracloud.io/
http://rancher.com/partners-index/
http://rancher.com/partners-index/

